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Abstract-Continua or structures composed of elastic perfectly-plastic material subjected to
cyclic loads which vary within the shakedown limits are considered. A theorem bounding the
residual deflection at any point is presented.

Some numerical examples are discussed.

1. INTRODUCTION

The problem of structures subjected to several static loading conditions, each of which
can vary independently between certain limits in the elastic-plastic range, was first studied
by Melan[1].

In Melan's paper it was pointed out that the overall deformation of the structure may
increase indefinitely in the loading program, even though no single load condition causes
plastic collapse. This characteristic feature of failure is avoided if, and only if, plastic
strains do not recur after the earlier stages of the loading program. Hence the structure,
after some finite amount of plastic strains, can respond, in a purely elastic manner, following
a residual stress distribution correspondent to the above mentioned permanent strains.

The structure is then said to shakedown and the maximum loading under which the
structure can shakedown is called the" shakedown loading."

In recent years, a great deal of attention has been focused on the estimation of the
shakedown loading for elastic-plastic structures.

A state-of-the-art on this subject as of 1960 is given in the excellent survey by Koiter[2]
on the theory of elastic-plastic solids.

Considerable progress in the practical application of the shakedown theory has been
made in recent years with the help of the concepts of mathematical programming. In this
context the linear programming theory has provided both efficient tools for numerical
solutions and a new mathematical framework for some features of the shakedown theory
(see e.g. [3,4]).

At this point, the only major limitation to the practical application of the present theory
is the absence of general bounding procedures which enable us to evaluate the local plastic
deformations when the shakedown loading is approached.

In fact, when the loading conditions of the structure vary within the limits for which the
structure shakes-down but outside the initial elastic loading limits, the permanent damage
caused by the initial cycles of plastic strains may be intolerable.

Then a realistic assessment of the structural safety requires an a priori determination of
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the order of magnitude of local quantities, such as displacements or plastic strains. Unfor
tunately, these values depend on the loading history which is, as a rule, unknown. Then we
are obliged to resort to bounding procedures.

Some of these bounding techniques have been developed recently[5, 6} for discrete
structural models with piecewise linear yield surfaces.

In this context, upper bounds on the requested local quantities may be evaluated by
solving mathematical programming problems which may be considered as general bounding
procedures in the field of discrete models of continua or structures.

More recently Ponter[7J has derived a general principle which allows the evaluation of
upper bounds to local displacement of elastic-plastic structures subjected to variable load
ing·t

In this work the bound is expressed as the sum of the deflections that would have
occurred if the structure was purely elastic and additional displacement that may be derived
from the elastic strain energy of a residual state of stress.

In this paper an entirely different derivation of a new principle bounding from above the
residual local displacement of an elastic-plastic structure subject to variable loading, is
proposed.

The result is obtained by using two additional statements (see sections 3 and 4) restricting
the complementary and the direct plastic work of the structure performed during any
loading history from the undisturbed state up to the time T at which the work-bounds are
desired.

By using these results for a particular loading programme which includes both the actual
loading path up to t = T, and a subsequent" fictitious loading path" from t = T up to t = T,
the general bounding principle (see section 5) is obtained.

The bound is so expressed as the sum of two displacements which may be both derived
from the elastic strain energy of two residual states of stress; the first one of these fields is
associated with the" fictitious loading condition" at the time t = T, the second one to the
actual loading path performed from the undisturbed state at t := 0 up to the time t = T at
which the displacement bound is required.

In section 6, two simple examples are discussed; as in the aforementioned work of
Ponter, it is seen that the bounds are generally not very accurate but provide a simple
calculation which may constitute a useful additional information in assessing the structural
safety.

Possible links with other previous and recent works on related topics are pointed out
in the text and in the concluding remarks.

2. FUNDAMENTALS

Let us consider a continuum of volume V and surface area S subjected, at any instant t,
to surface tractions T; on the unconstrained region ST of S and to body forces Xi through
out its volume V.

Let us suppose that the material behavior is elastic-perfectly plastic of the standard
type (i.e. Drucker's stability postulate[8J holds) and that the elastic stress-strain relation
ships are linear (i.e. Hooke's law holds).

With these assumptions, the actual displacement U; at any instant t may be considered

t The work of Ponter was brought to the author's attention after the completion of the first version of
this paper.



A displacement bounding principle in shakedown of structures subjected to cyclic loads 79

as the sum of the displacement Ui
E in a purely linear elastic regime under the same load

condition, and of the path-dependent residual displacement u/ caused by the plastic-strains
that the structure has previously suffered.

Thus we have:

Ui(t) = ut(t) + u/(t). (1)

In the same spirit, the actual stresses aij(t) and the actual total strains Gij(t) may be con
ceived as split into the following addends:

ai/t) = a/(t) + a;/(t)

Gij(t) =G/(1) +G;/(t) + G;/(t)
(2)

where a/ and G/ denote the purely-elastic stress and strain response of the structure
under the same load conditions, and a;/, G;/ denote the elastic response of the structure
to the non-compatible plastic strain distribution Gi/'

Then it is obvious that at any instant t the following conditions must be satisfied:

(a) Equilibrium equations

E Xj =0, a~ji = 0 Vaij/ i + In

ai/ni = Tj , ai/ni =0 In ST'

(b) Compatibility equations

Gi/ = 1(u~j + uJIJ, Gi/ + GJ = l(uDj + uf/i) in V

u/ = 0, U i
R = ° in S - ST'

(c) Elasticity equations

(3)

(4)

R A R
Gij = ijhk ahk (5)

where the tensor of elastic coefficients A ijhk has the usual properties of symmetry:

(6)

As known, Melan's theorem states that if any time-independent distribution of residual
stresses ifi/ can be found such that the state of stress:

(7)

is at any time t a safe state, the structure, after an initial elastic-plastic behavior, shakes
down and the response to subsequent load variations is purely elastic.

On the assumption that the structure shakes-down, we can now proceed to prove some
general theorems which will enable us to develop subsequently the desired displacement
bounding principle.
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3. A COMPLEMENTAR Y PLASTIC-WORK THEOREM

Let us denote by Up(r) the quantity:

Up(r) = f dS ft;(t)u/(t)dt+ f dV fXi(t)u/(t)dt
ST 0 v 0

(8)

which may be referred to as "total complementary plastic work" performed during a
load path starting from the undisturbed state at t = 0 up to t = r.

By virtue of equations (2-4), the right hand side of (8) can be rewritten in the following
form:

Up(r) = f dV f&ij(t)e/(t)dt+ f dV f&ij(t)e;{(t)dt
v 0 v 0

= f dV f&/(t)e/(t) dt + f dV fT&ij(t)ei/(t) dt
v 0 v 0

after using the condition:

f &/(t)ei/(t) dV = f (J/(t)e/(t) dV = O.
v v

(9)

(10)

(13)

With the aid of equations (5), we may write equation (9) in the form:

Up(r) = ~ f Aijhk(J/(r)(Jh/(r) dV + f (Jiir)e;{(r) dV - f dV fT(Jij(t)e;{(t) dt (11)
2 v v v 0

where (Jij(r), (J/(r), e;/(r) represent the stress components, the self-stresses and the
plastic strains at the final stage of the assigned load path.

We can now demonstrate the following bounding principle:

Theorem I

If (Ji/* represents any distribution of self-stresses such that the state of stress

(Jij*(r) = (J;/(r) + (J/* (12)

is a safe state, the complementary plastic work Up(r) may be upperbounded by the condition:

Up(r):::; ~ Iv Ajjhk(Ji/*(Jh/* dV.

To prove this principle, let us express any admissible distribution of self-stresses as:

(14)

and indicate by R(T) the difference:

R(r) =-2
1 r Aijhk(Ji/*(Jh/*dV-Up(r). (IS)

·v

From equations (11) and (15) we then may write:

R(r) = r Aijhk Ll(Ji/(Jh/(r) dV + ~ f A jjhk Ll(Jj/ !1(Jh/ dVJv 2 v

- Iv(Jij(T)8i/(r) dV + Iv dV J~(Jij(t)e;{(t)dt. (16)



A displacement bounding principle in shakedown of structures subjected to cyclic loads 81

On the other hand, the first integral on the right hand side of equation (16) may be
written in the form:

which, making use of the condition:

/),(J;/ = (Jij*(r) - (Jij(r)

reduces to:

(17)

(18)

(19)

(20)

- L {(Jij*(r) - (Jij(r)}/;/(r) dV =

= - L dV {(Ji/(r)e/(t) dt + L(Ji/r)/;/(r) dY.

Thus equation (16) may be finally rearranged in the form:

R(r) = 2~ f Aijhk /),(Ji/ /),(Jht dV + f dV f{(Jij(t) - (Ji/(r)}ei/(t) dt. (21)
v v 0

Since (Jij*(r) is, by hypothesis, a safe state of stresses, Drucker's stability postulate assures
that the second integral in equation (21) is always non-negative.

Then it is obvious that:

R(r) ?: 0 (22)

and thus theorem I is proved.
It is noteworthy to observe that, by assuming a piecewise linear yield surface, theorem I

may be directly deduced from Maier's theorems of bounding complementary plastic work[9],
simply by cancelling the term depending on the hardening of material (see e.g. inequality
(14) at page 264 of the above quoted work). However, in the particular context of perfect
plasticity, the present conclusion is more general since it does not require any particular
assumption on the yield surface except for that imposed by the Drucker stability postulate.

In this sense it may be interesting to note that the search via theorem I for the best upper
bound Up0 obviously reduces to the minimization of the right hand side of (13) with (J;/*
constrained by the condition that the state of stress (12) is contained within the yield
surface.

This convex optimization problem bears a close resemblance to the Haar-Karman
principle[lO], and differs from the latter only in that we have used self-equilibrated states
of stress instead of the global state of stress.

Then theorem I may be considered equivalent to another bounding principle derived
by Hodge[ll], and it may be inserted, as a particular case, in the context of a recent work
by Ponter and Martin[12] on the connections between the flow and deformation theories
of plasticity.

4. A DIRECT PLASTIC-WORK THEOREM

Let us denote by Wp(r) the quantity:

Wp(r) = f dS f1i(t)u j
R(t) dt + f dV fXi(t)uNt) dt

ST 0 V 0

IJSS Vol. 10 No.1 F

(23)
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which may be referred to as "total direct plastic work" performed during the load path
starting from the undisturbed state at t = 0 up to t = r.

By virtue of equations (2--4), the right hand side of (23) can be rewritten in the
following form:

Wp(r) = i dV faij(t){a;/(t) + a/(t)} dt
v 0

= i dV fai/(t){a;/(t) + a/(t)} dt = f dV fai/(t)ai/(t) dt (24)
v 0 v 0

after using the relations:

i a;/(t){a;/(t) + a;/(t)} dV = 0
v

Iv a;/(t)ai/(t) d V = Iv (Ji/(t)ei/(t) d V = o.

We can now develop the following bounding principle:

(25)

(28)

Theorem II

If any time-independent distribution of residual stresses u;/ can be found such that the
state of stresses:

ui/t) = ma;/(t) + Ui/ (26)

associated with a factor m > 1, is a safe state for any time t falling in the interval:

o:s; t :s; r, (27)

then the direct plastic work Wp(r) may be upperbounded by the condition:

1 1f - R- RWp(r):S;m_l"2 yAijhkaij ahk dV.

To prove this principle we can observe that from Drucker's stability postulate we have
the inequality:

{aij(t) - uij(t)}a;/(t) ;;::: 0

which, by means of equations (2) and (26), may be rewritten in the form:

(I - m)a;/(t)a;/(t) + {a;/(t) - u;/}a;/(t) ;;::: O.

(29)

(30)

Integrating (30) over the volume of the body and using the results of equation (24), we
get the inequality:

(1 - m)Wp(t) + i {a;/(t) - ui/}a;/(t) d V;;::: 0
v

which, by means of the obvious condition:

r {a/(t) - u/}a;/(t) dV = - i {a/(t) - u/};a/(t) dV
Jv v

(31)

(32)
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may be rewritten in the form:

lVp(t) :s;; - _1_
1

f {O";/(t) - O';/}e;/(t) dV.
m - Jy

Integration of this inequality with respect to time, from t = 0 to t = r, results in:

(33)

Wp(r):s;; m ~ 1 {~Iv A'jhkO';/O'hkj dV - ~ Iv A ijhk [0" i/(r) - a;/HO"h/(r) - O'h/] dV}.

(34)

The bounding condition (28) follows immediately from (34). Thus the theorem is proven.
At this point, it is interesting to note that the existence of a safety factor S > 1 with

regard to shakedown is adequate to assure the existence of a bound for Wp(r) at any time r.
Then the search via theorem II for the best upper bound Wp

0 reduces to the minimiza
tion of the right hand side of (28) with 0';/ constrained by the condition that for any t,
the state of stress (26) is contained within the yield surface, and m constrained by the
obvious conditions:

1 :S;;m:s;;S. (35)

It is easy to see that the existence of a factor m > 1 such that the state of stress mO"i/(t)
is contained within the yield surface, is adequate to assure that the best bound Wp

0 is zero.
Then if oc > 1 is the factor for which at any time t the loading condition remains within

the elastic limits, the interval (35) may be substituted by the inequality:

oc:S;;m:s;;S. (36)

As a final point, it may be noted that the bounding condition (28) bears a close resem
blance to Koiter's inequality (see e.g. [2], p. 208) ensuring that the overall plastic deforma
tion is bounded when the structure shakes-down.

However, it is easy to see that the total plastic work bounded by Koiter is not coincident
with the plastic work Wp(r) which we have previously defined, and also that the constraints
of the two bounding conditions are quite different.

5. THE DISPLACEMENT BOUNDING PRINCIPLE

Let us suppose that the body is subjected to the following load programme: first the sur
face tractions and the body forces change from t = 0 to t = r along the actual load path;
second, the surface tractions and the body forces change from t = r to t = T along the
linear fictitious path:

r.S
- T.(r)

Tj = • I (t - r) + T i( r)
. T- r

(37)

where TiS and X/ represent any safe state of loading for the body.
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Let us now evaluate the total complementary plastic work performed from the undis
turbed state at t = 0 up to t = T. Obviously we have:

T T

V p(T) = V per) + f dS JT;(t)ut(t) dt + f dV JXi(t)ut(t) dt
ST t V 't

T

= V per) + f dS J T;(t){UiR(t) - uf(r)} dt +f Pis - 1i(r)}ujR(r) dS
ST t ST

T

+f dV JXi(t){ut(t) - uf(r)} dt +f {XiS - Xj(r)}ujR(r) dV. (38)
v t v

On the other hand, since we have:

Vp(r) + Wp(r) = f T;(r)u/(r) dS + J X;(r)uiR(r) dV
ST v

we may write equation (38) in the form:

where:

(39)

(40)

T T

11 = f dS JT;(t){UiR(t) - ut(r)} dt +f dV JX;(t){ut(t) - uNr)} dt. (41)
ST t v t

Since:

UiR(t) - u/(r) = ru/(t) dt
t

(42)

equation (41), being Ti(t) and Xi(t) constant in the interval r ~ t ~ T, may be rewritten as:

T t T t

11 = f dS J dt JT;(~)ut(~) d~ + f dV J dt JXj(~)Uim d~. (43)
ST T t V r T

On the other hand, we may write:

= Iv cTi/(~)Bi/m dV= Iv AijhkcT;/(~)cTh/(~)dV~ 0 (44)

Thus, equation (43) yields the inequality:

A~O

which, once inserted in equation (40), enables us to affirm that:

f Tisu/(r) dS + f X/u/(r) dV ~ Vp(T) + Wp(r).
ST v

(45)

(46)

Then, making use of the theorems previously developed in sections 3 and 4, we can
formulate the following bounding principle:
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Theorem III

The residual displacements occurring in any loading programme starting from the undis
turbed state at t = 0 up to any time t = T, may be bounded by the inequality:

f S R f· SRI f R* R* 1 1f - R- R VIi ui (T) dS + Xi Ui (T) dV::; - AijhkO'ij O'hk dV +-_. - AijhkO'ij O'hk d
ST V 2 v m - 1 2 v

(47)

where O'i/* represents any distribution of self-stresses which enable us to compress inside
the yield limits the elastic stress state associated with the fictitious loads Tis and XiS, and
Bi/ represents any distribution of self-stresses which renders the state of stress associated
with a factor m > I :

mO'/(t) + iiijR

a safe state for any t falling in the interval:

O::;;t::;T.

It may be noted that the choice of Tis, X/ is dictated entirely by those properties of the
displacement field u/(T) for which a bound is desired. Thus we can make deliberate use
of the fact that T/, X/ and UiR( T) may be completely independent of each other.

Therefore, if we suppose that the body forces X/ vanish and that T/ is a single point
load R S acting at a point P along a prefixed direction a, equation (47) reduces to:

(48)

where u/(P) is the residual displacement component of the point P in the direction a.
Then the search via (48) for the best upper bound u/O(P) reduces to the minimization ofthe
right hand side of (48) under the appropriate constraints for R S

, O'f*, (;i/ and m.
This optimization problem may be solved first by substituting the last term of (48) with

the best plastic work bound Wpo, and then by solving the minimum problem:

(49)

under the constraints that RS be less than the static collapse load Re, and that the stress
state O'i/ + 0';/* (sum of the fully elastic stress solution associated to R S and of the vari
ables self-stresses O'i/*) be contained within the yield surface.

However, it may be quite difficult in general to solve the abovementioned optimization
problem. Thus it may be important to furnish simple bounds which can be easily evaluated
and accepted by engineering practice. Then a simple first bounding inequality may be writ
ten in the form:

u/(P)::; 2~C {IvAijhkO'i/CO'hkRC dV + S ~ 1 IvAijhkBijRSiih/S dV} (50)

where RC is the static collapse value of RS, O'ijRC are the selfstresses associated with RCand
S, iiijRS are the shakedown safety factor and, respectively, the associated selfstresses.
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(51)

(52)

A second way to define a simple bound may be obtained by supposing the value RS

coincident with the elastic limit R E
. In such a case, being (J ijR* == 0, we have:

u/(P):S; 2(5 ~ I)RE Iv A;jhk(Ji/S(Jh/
S

dV.

It is obvious that the smaller value between the values (50) and (51) constitutes, in this
limited context, the best bound that we may obtain.

Finally, it should be useful to note that all the preceeding results may be used for one
and two-dimensional continua by considering the appropriate generalized stress and
strain components. Moreover, the one-parameter loading conditions may be treated in
the same way since they may be considered as particular cases in the shakedown theory.

Two simple one-dimensional continua will be discussed, as examples, in the following
section.

6. EXAMPLES

The bounds which follow are intended only to illustrate the simplified bounding tech
nique based on inequalities (50) and (51).

As a first example we will investigate the two-span beam of Fig. 1a. The continuous
beam is of uniform section, full plastic moment M p , flexural elastic rigidity EI, and the
loads FI and F2 vary independently between the identical limits :

o:s; FI :s; Fo

o:s; F2 :s; Fo .

The largest value of Fo for which the beam system shakes down is given by the value (see
e.g.[II] at p. 135):

( b)

96Mp M p
F =--=5·05-·

S 191 1

I' B

jF,

m:::;; A :A; C ~

I· ·1 .1
(a)

~
ol---~·-x

Fig. 1

(53)
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The pattern of residual moments M/, when Fo = Fs , is sketched in Fig. Ib and the value
of the residual moment at B is given by the relation:

- s M p
MR(B)=-·

19
(54)

A bound on the central residual displacement w.,l of the point A, when Fo :::;; Fs , is
desired. Thus the fictitious static system which we must chose is the one shown in Fig. 2a.
Therefore, if we wish to make use of the inequality (50), F1 must coincide with the static
collapse load of the beam:

6Mp
Fc =--·

I
(55)

The pattern of residual moments M R
C

, when F1 = Fc , is sketched in Fig. 2b and the
value of the residual moment at B is given by the relation:

c 7Mp
MR(B)=-.

16
(56)

Thus, the equivalent of the bound expression (50) in the present case may be written in
the form:

(b)

WAR:::;; 12~p {2 J: C~P7r~;+ s~ 1((~;7r~;}
which gives the first bounding relationship:

R M p [2 { 49 I}
W A :::;; 18£1 256 + 361(S - 1) .

je
B

~ ~
I :7A,.A C

I· -I- -I
(0 )

~
ol----·-x

Fig. 2

(57)

(58)
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A second bounding relationship may be developed by using inequality (51). In such a
case, in the fictitious load condition shown in Fig. 2a, F1 must be coincident with the
elastic limit load:

64Mp M p
F£=--=4·92-·

131 1

Thus, the equivalent of the bound expression (51) may be written in the form:

(59)

(60)

which gives the second bounding relationship:

IV R < 13Mp l
2

A - 192£/ 361(5 - I)
(61)

By comparing relationships (58) and (61) is is easy to note that the first one gives the
best bound for 1 :s; 5 :s; 1·0032. Thus, for 5 ~ 1·0032 the best bound is given by the rela
tionship (61).

Now, in order to compare these bounds to the actual response of the structure for a
prefixed load cycle, we suppose that after increasing the load F1 from zero to Fo , this load
is fixed at the value Fo while F2 is allowed to fluctuate between zero and the same value Fo .

After developing a simple calculation, the residual displacement WAR at point A may be
written in the form:

Since:

R 169F0 z2
W A = -1-53=-6":"£:-='1

13Mp 12 J'f 64Mp 96Mp
--<F <--

24£1 131 - 0 - 191

64Mp
if O<Fo<--'- - 131

Fs 96Mp
Fo=-=-- .

5 1915

(62)

(63)

Equations (62) may be rewritten in the form:

WAR = 13Mp [2. 39 - 385
912El 5

if

if

39
I :s; 5 :s; 38

39
-<5<0038 - -

(64)

The results of these calculations together with the bounding values (58) and (61) have
been plotted on Fig. 3 as functions of the safety factor 5.

The difference between the best bound value and the actual value of WAR is quite large,
but it may be reduced if an optimization technique of the general bound expression (48)
is developed. In the limited context of the simplified inequalities (50) and (51) we can
only expect to obtain the order of the residual displacement.

In order to show now that the results of this paper enable us also to bound the residual
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2·0I· 5

'\---- Actual value
-- Bound value Eq.(61l

-- Bound value Eq.(5B)

100·5

\ ,
\

\ ,
\ ,

\ ,
\

\ ,,,,
\ ,,,,,,,,,,

" ,
o

1·01

1·02I
CJ)

Fig. 3

displacements of structures subjected to one-parameter loading conditions; we will investi
gate, as a second example, the fixed ended beam of Fig. 4a. This beam is of uniform section,
full plastic moment M p , flexural elastic rigidity EI and the uniform load P varies between
the limits:

(65)

The largest value of Po for which the beam shakes-down coincides, in this case, with the
static collapse value:

16Mp
Ps =PC =--2-'

I
(66)

I-
(0)

-\

°l----:X

~~
(b)

Fig. 4
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The pattern of residual moments M/, when Po = Ps , is sketched in Fig. 4b and turns
out to be of constant value:

- s M pM R (x) =_.
3

(67)

A bound on the central residual displacement WAR of the point A, when Po < Ps, is
desired.

Thus the fictitious static system which we must chose is the one shown in Fig. 5. Since
in this case the residual moments MR C which develop in the beam when F coincides with
the static collapse value:

8Mp
Fc =--

/

vanish, the bound expressions (50) and (51) give the same result.
Thus the bounding relation may be written in the form:

which gives:

R M p /
2 I

W <--.-_.
A - 144£/ 5 - 1

It is easy to show that the actual value of WAR is given by the equations:

WAR = Po [4 _ M p [2 if 12Mp < P < 16Mp
96El 8El [2 - 0 - [2

12Mp
if O:s; Po :s; -[-2-'

Thus, bearing in mind that:

(68)

(69)

(70)

(71)

(72)

equations (71) may be rewritten in the form:

R Mpfl 4 - 35
W --_._-

A - 24£/ 5 if

if 1:s; 5:s; 00. (73)

j
jF

~A

~ ·1
Fig. 5
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130

I 20,-
'"

\
\

\
\

1 10 -

Actual value

Bound value Eq.(70)

o

12 E IW~

Mp I 2

Fig. 6

15 20

The results of these calculations, together with the bounding value (70), have been
plotted on Fig. 6 as functions of the safety factor S.

In this case also it may be noted that the difference between the bound curve and the
actual curve is quite large.

7. CONCLUSIONS

In this paper we have discussed a method to obtain upper bounds on the residual dis
placement at a point of an elastic-plastic structure subject to variable loading.

The bound is obtained as the sum of displacements which derive from the elastic strain
energy of two residual states of stress: the first one is associated with a fictitious loading
condition whose distribution is entirely dictated by those properties of the actual displace
ment field for which a bound is desired, the second one is associated to the loading range
in the prefixed interval of time.

The result applies on the usual assumptions of perfect plasticity and small strains.
On the same assumptions, a recent work of Ponter[7] provides an entirely different

bounding principle which furnishes the bound on the global displacement at a point as
the sum of an elastic deflection and of an additional displacement which derives from a
residual state of stress.

This latter, as well as the elastic deflections, is associated with a loading programme
which includes both the fictitious loading condition as well as the actual loading range.

Thus the result is entirely different and it is not easily comparable with the present
derivation.

However it may be observed that, from a practical point of view, both the principles seem
to provide similar answers in what concerns the bound approximation.

It may be also interesting to compare numerically these results with tlose that may be
deduced by using the alternative formulations proposed by Vitiello[5] and Maier[6] in the
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field of the discrete models of piecewise linear elastoplastic structures. As in the latter
work[6], it would be interesting to extend the present results to allow for hardening and
geometric effect which may have a noteworthy importance in this area.
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AOCTpaKT - l1'cCJIe,l1YIOTcJl CnJIOlIlHbIe Cpe,l1bI HJIH CTpyKTypbl COCTaBJIeHHbIe H3 ynpyroro
H,l1earrbHO-nJIaCTHlfeCKoro MaTepHaJIa, nO,l1BeplKeHHbIe ,l1eACTBHIO UHKJIHlfeCKHX Harpy30K, KOTO
pbIe H3MeHJlIOTCJI Bnpe,l1eJIax ,l10 pa3pYllleHHJI. L(aeTCJI TeopeMa ,l1JIJI orpaHHlfeHHJI OCTaTOlfHOro
nporH6a.

06cYlK,l1aIOTCJI HeKOTopbIe lfHCJIeHHbIe npHMepbl.


